SUPERBOOM SL-700R ROUGH TERRAIN CRANE

[SPECIFICATION]

CRANE

Description
Rough terrain crane with maximum lifting capacity 70 ton

Fly jib length
8.3m

Boom length
10.0m (Full 10.0m) 8.3m → 4.4m (6 sections)

Hoisting line
Motor Axial plunger type

Slewing speed
1.8min × 60 = 108°/min

Number of speeds
6 forward & 2 reverse speed

Slewing automatic stop system
Hydraulic type

Winch system

- **Main winch**
 - Diameter: 18mm
 - Parts of line: 16
 - Speed: 160m/min.
 - Capacity: 10m/min. (at 5th layer)

- **Auxiliary winch**
 - Diameter: 18mm
 - Parts of line: 1
 - Speed: 150m/min.
 - Capacity: 150m/min. (at 4th layer)

Outriggers

- **Extension with**
 - Diameter: 18mm
 - Length: 240m
 - Diameter: 18mm
 - Length: 131m

Hydraulic equipment

- **Hydraulic motor**
 - Axial plunger type

Engine

- **Maximum torque**
 - 1,510N

Transmission

- **Number of speeds**
 - 6 forward & 2 reverse speed

Auxiliary equipment

- **Slewing lock**
 - 60°

Safety devices

- **Emergency steering device**
 - Automatic,
 - Spring applied, electrically air released parking brake

Standard equipment

- **Centralized lubricating system**, **Bypass oil filter**, **Automatic open/close side mirror**

Optional equipment

General dimensions

- **Overall length**
 - 12.9m

Tire size

- **Front**
 - 385 / 95 R25 170E ROAD

Fuel tank capacity

- 370L

Gross vehicle mass

- **Approx. 41,145kg**

Passenger capacity

- **Front - 1st axle**
 - approx. 10,260kg

Organization and style

- **Stow the hooks in place before traveling.**
- **Before you use this machine, read the precautions in the instruction manual thoroughly to operate it correctly.**
- **KATO products and specifications are subject to improvements and changes without notice.**

KATO

Fly jib length
8.3m

Boom length
10.0m (Full 10.0m) 8.3m → 4.4m (6 sections)

Hoisting line
Motor Axial plunger type

Slewing speed
1.8min × 60 = 108°/min

Number of speeds
6 forward & 2 reverse speed

Slewing automatic stop system
Hydraulic type

Winch system

- **Main winch**
 - Diameter: 18mm
 - Parts of line: 16
 - Speed: 160m/min.
 - Capacity: 10m/min. (at 5th layer)

- **Auxiliary winch**
 - Diameter: 18mm
 - Parts of line: 1
 - Speed: 150m/min.
 - Capacity: 150m/min. (at 4th layer)

Outriggers

- **Extension with**
 - Diameter: 18mm
 - Length: 240m
 - Diameter: 18mm
 - Length: 131m

Hydraulic equipment

- **Hydraulic motor**
 - Axial plunger type

Engine

- **Maximum torque**
 - 1,510N

Transmission

- **Number of speeds**
 - 6 forward & 2 reverse speed

Auxiliary equipment

- **Slewing lock**
 - 60°

Safety devices

- **Emergency steering device**
 - Automatic,
 - Spring applied, electrically air released parking brake

Standard equipment

- **Centralized lubricating system**, **Bypass oil filter**, **Automatic open/close side mirror**

Optional equipment

General dimensions

- **Overall length**
 - 12.9m

Tire size

- **Front**
 - 385 / 95 R25 170E ROAD

Fuel tank capacity

- 370L

Gross vehicle mass

- **Approx. 41,145kg**

Passenger capacity

- **Front - 1st axle**
 - approx. 10,260kg
<table>
<thead>
<tr>
<th>Working radius (m)</th>
<th>10.0m</th>
<th>16.9m</th>
<th>23.8m</th>
<th>30.7m</th>
<th>37.6m</th>
<th>41.5m</th>
<th>44.5m</th>
<th>49.4m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Boom</td>
<td>Boom</td>
<td>Boom</td>
<td>Boom</td>
<td>Boom</td>
<td>Boom</td>
<td>Boom</td>
<td>Boom</td>
</tr>
<tr>
<td>2.5</td>
<td>56.00</td>
<td>32.00</td>
<td>25.00</td>
<td>12.50</td>
<td>10.00</td>
<td>5.50</td>
<td>4.50</td>
<td>3.50</td>
</tr>
<tr>
<td>3.0</td>
<td>53.00</td>
<td>32.00</td>
<td>25.00</td>
<td>12.50</td>
<td>10.00</td>
<td>5.50</td>
<td>4.50</td>
<td>3.50</td>
</tr>
<tr>
<td>4.0</td>
<td>50.00</td>
<td>32.00</td>
<td>25.00</td>
<td>12.50</td>
<td>10.00</td>
<td>5.50</td>
<td>4.50</td>
<td>3.50</td>
</tr>
<tr>
<td>5.0</td>
<td>47.00</td>
<td>32.00</td>
<td>25.00</td>
<td>12.50</td>
<td>10.00</td>
<td>5.50</td>
<td>4.50</td>
<td>3.50</td>
</tr>
<tr>
<td>6.0</td>
<td>44.00</td>
<td>32.00</td>
<td>23.40</td>
<td>12.50</td>
<td>10.00</td>
<td>5.50</td>
<td>4.50</td>
<td>3.50</td>
</tr>
<tr>
<td>7.0</td>
<td>41.00</td>
<td>32.00</td>
<td>22.50</td>
<td>12.50</td>
<td>10.00</td>
<td>5.50</td>
<td>4.50</td>
<td>3.50</td>
</tr>
<tr>
<td>8.0</td>
<td>38.00</td>
<td>32.00</td>
<td>21.50</td>
<td>12.50</td>
<td>10.00</td>
<td>5.50</td>
<td>4.50</td>
<td>3.50</td>
</tr>
<tr>
<td>9.0</td>
<td>35.00</td>
<td>32.00</td>
<td>20.50</td>
<td>12.50</td>
<td>10.00</td>
<td>5.50</td>
<td>4.50</td>
<td>3.50</td>
</tr>
<tr>
<td>10.0</td>
<td>32.00</td>
<td>32.00</td>
<td>20.00</td>
<td>12.50</td>
<td>10.00</td>
<td>5.50</td>
<td>4.50</td>
<td>3.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical boom angle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30°</td>
<td>45°</td>
<td>60°</td>
<td>90°</td>
<td>30°</td>
<td>45°</td>
<td>60°</td>
<td>90°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard hook for 10t/10t</td>
<td>30.3k</td>
<td>30.3k</td>
<td>30.3k</td>
<td>30.3k</td>
<td>30.3k</td>
<td>30.3k</td>
<td>30.3k</td>
<td>30.3k</td>
</tr>
</tbody>
</table>
44.5m Boom + 8.3m SLJib

<table>
<thead>
<tr>
<th>Offsets</th>
<th>7°</th>
<th>25°</th>
<th>45°</th>
<th>60°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boom angle 1°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>6.8</td>
<td>4.00</td>
<td>47.1</td>
<td>1.75</td>
</tr>
<tr>
<td>65</td>
<td>6.0</td>
<td>4.00</td>
<td>46.7</td>
<td>1.45</td>
</tr>
<tr>
<td>66</td>
<td>5.2</td>
<td>4.00</td>
<td>46.3</td>
<td>1.15</td>
</tr>
<tr>
<td>67</td>
<td>4.8</td>
<td>4.00</td>
<td>46.0</td>
<td>0.85</td>
</tr>
<tr>
<td>68</td>
<td>4.6</td>
<td>4.00</td>
<td>45.8</td>
<td>0.55</td>
</tr>
<tr>
<td>69</td>
<td>4.6</td>
<td>4.00</td>
<td>45.8</td>
<td>0.25</td>
</tr>
</tbody>
</table>

44.5m Boom + 12.9m SLJib

<table>
<thead>
<tr>
<th>Offsets</th>
<th>7°</th>
<th>25°</th>
<th>45°</th>
<th>60°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boom angle 1°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>6.8</td>
<td>4.00</td>
<td>47.1</td>
<td>1.75</td>
</tr>
<tr>
<td>65</td>
<td>6.0</td>
<td>4.00</td>
<td>46.7</td>
<td>1.45</td>
</tr>
<tr>
<td>66</td>
<td>5.2</td>
<td>4.00</td>
<td>46.3</td>
<td>1.15</td>
</tr>
<tr>
<td>67</td>
<td>4.8</td>
<td>4.00</td>
<td>46.0</td>
<td>0.85</td>
</tr>
<tr>
<td>68</td>
<td>4.6</td>
<td>4.00</td>
<td>45.8</td>
<td>0.55</td>
</tr>
<tr>
<td>69</td>
<td>4.6</td>
<td>4.00</td>
<td>45.8</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Based on ISO 4305
Not exceed 75% of static tipping loads
44.5m Boom + 17.5m SLJib

Outriggers fully extended (over side and over rear)

- **Boom angle (°)**
- **Offset 7°**
- **Offset 25°**
- **Offset 45°**
- **Offset 60°**

<table>
<thead>
<tr>
<th>Load (ton)</th>
<th>Load (ton)</th>
<th>Load (ton)</th>
<th>Load (ton)</th>
<th>Load (ton)</th>
<th>Load (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>8.3</td>
<td>8.1</td>
<td>7.9</td>
<td>7.7</td>
<td>7.5</td>
</tr>
<tr>
<td>80</td>
<td>12.5</td>
<td>12.3</td>
<td>12.1</td>
<td>11.9</td>
<td>11.7</td>
</tr>
<tr>
<td>77</td>
<td>16.6</td>
<td>16.4</td>
<td>16.2</td>
<td>16.0</td>
<td>15.8</td>
</tr>
<tr>
<td>73</td>
<td>22.0</td>
<td>21.8</td>
<td>21.6</td>
<td>21.4</td>
<td>21.2</td>
</tr>
<tr>
<td>70</td>
<td>31.5</td>
<td>31.3</td>
<td>31.1</td>
<td>30.9</td>
<td>30.7</td>
</tr>
<tr>
<td>68</td>
<td>44.1</td>
<td>43.9</td>
<td>43.7</td>
<td>43.5</td>
<td>43.3</td>
</tr>
</tbody>
</table>

Critical boom angle
- **Standard hook**
- **Critical boom angle**

Outriggers intermediately extended (over side)

- **Boom angle (°)**
- **Offset 7°**
- **Offset 25°**
- **Offset 45°**
- **Offset 60°**

<table>
<thead>
<tr>
<th>Load (ton)</th>
<th>Load (ton)</th>
<th>Load (ton)</th>
<th>Load (ton)</th>
<th>Load (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>8.3</td>
<td>8.1</td>
<td>7.9</td>
<td>7.7</td>
</tr>
<tr>
<td>80</td>
<td>12.5</td>
<td>12.3</td>
<td>12.1</td>
<td>11.9</td>
</tr>
<tr>
<td>77</td>
<td>16.6</td>
<td>16.4</td>
<td>16.2</td>
<td>16.0</td>
</tr>
<tr>
<td>73</td>
<td>22.0</td>
<td>21.8</td>
<td>21.6</td>
<td>21.4</td>
</tr>
<tr>
<td>70</td>
<td>31.5</td>
<td>31.3</td>
<td>31.1</td>
<td>30.9</td>
</tr>
<tr>
<td>68</td>
<td>44.1</td>
<td>43.9</td>
<td>43.7</td>
<td>43.5</td>
</tr>
</tbody>
</table>

Outriggers extended (over front)

- **Boom angle (°)**
- **Offset 7°**
- **Offset 25°**
- **Offset 45°**
- **Offset 60°**

<table>
<thead>
<tr>
<th>Load (ton)</th>
<th>Load (ton)</th>
<th>Load (ton)</th>
<th>Load (ton)</th>
<th>Load (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>8.3</td>
<td>8.1</td>
<td>7.9</td>
<td>7.7</td>
</tr>
<tr>
<td>80</td>
<td>12.5</td>
<td>12.3</td>
<td>12.1</td>
<td>11.9</td>
</tr>
<tr>
<td>77</td>
<td>16.6</td>
<td>16.4</td>
<td>16.2</td>
<td>16.0</td>
</tr>
<tr>
<td>73</td>
<td>22.0</td>
<td>21.8</td>
<td>21.6</td>
<td>21.4</td>
</tr>
<tr>
<td>70</td>
<td>31.5</td>
<td>31.3</td>
<td>31.1</td>
<td>30.9</td>
</tr>
<tr>
<td>68</td>
<td>44.1</td>
<td>43.9</td>
<td>43.7</td>
<td>43.5</td>
</tr>
</tbody>
</table>

When the outriggers are not used

- **Working radius (m)**
- **Stationary on rubber**
 - **Over front 360° full range**
 - **Over front 360° full range**
- **Pick & carry (less than 2 km/h)**
 - **Over front 360° full range**
 - **Over front 360° full range**
- **Working radius (m)**

<table>
<thead>
<tr>
<th>Working radius (m)</th>
<th>10.0m Boom</th>
<th>16.0m Boom</th>
<th>23.8m Boom</th>
<th>10.0m Boom</th>
<th>16.0m Boom</th>
<th>23.8m Boom</th>
<th>10.0m Boom</th>
<th>16.0m Boom</th>
<th>23.8m Boom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over front</td>
</tr>
<tr>
<td>3.5</td>
<td>16.0</td>
<td>9.0</td>
<td>13.0</td>
<td>6.5</td>
<td>8.0</td>
<td>4.0</td>
<td>12.0</td>
<td>7.0</td>
<td>8.5</td>
</tr>
<tr>
<td>4.0</td>
<td>16.0</td>
<td>7.0</td>
<td>12.0</td>
<td>6.5</td>
<td>8.0</td>
<td>4.0</td>
<td>11.0</td>
<td>5.7</td>
<td>8.5</td>
</tr>
<tr>
<td>4.5</td>
<td>14.0</td>
<td>5.7</td>
<td>13.0</td>
<td>6.0</td>
<td>8.0</td>
<td>4.0</td>
<td>10.0</td>
<td>4.6</td>
<td>8.0</td>
</tr>
<tr>
<td>5.0</td>
<td>14.0</td>
<td>4.6</td>
<td>13.0</td>
<td>6.0</td>
<td>8.0</td>
<td>4.0</td>
<td>9.0</td>
<td>3.8</td>
<td>7.0</td>
</tr>
<tr>
<td>5.5</td>
<td>11.0</td>
<td>3.8</td>
<td>12.0</td>
<td>6.0</td>
<td>8.0</td>
<td>4.0</td>
<td>6.0</td>
<td>3.2</td>
<td>7.0</td>
</tr>
<tr>
<td>6.0</td>
<td>10.0</td>
<td>2.0</td>
<td>12.0</td>
<td>6.0</td>
<td>8.0</td>
<td>4.0</td>
<td>5.0</td>
<td>2.0</td>
<td>6.0</td>
</tr>
<tr>
<td>6.5</td>
<td>10.0</td>
<td>1.5</td>
<td>12.0</td>
<td>6.0</td>
<td>8.0</td>
<td>4.0</td>
<td>4.0</td>
<td>1.5</td>
<td>5.0</td>
</tr>
<tr>
<td>7.0</td>
<td>9.0</td>
<td>1.0</td>
<td>12.0</td>
<td>6.0</td>
<td>8.0</td>
<td>4.0</td>
<td>3.0</td>
<td>1.0</td>
<td>4.0</td>
</tr>
<tr>
<td>7.5</td>
<td>8.0</td>
<td>0.0</td>
<td>12.0</td>
<td>6.0</td>
<td>8.0</td>
<td>4.0</td>
<td>2.0</td>
<td>0.0</td>
<td>3.0</td>
</tr>
<tr>
<td>8.0</td>
<td>7.0</td>
<td>0.0</td>
<td>12.0</td>
<td>6.0</td>
<td>8.0</td>
<td>4.0</td>
<td>1.0</td>
<td>0.0</td>
<td>2.0</td>
</tr>
<tr>
<td>8.5</td>
<td>6.0</td>
<td>0.0</td>
<td>12.0</td>
<td>6.0</td>
<td>8.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>9.0</td>
<td>5.0</td>
<td>0.0</td>
<td>12.0</td>
<td>6.0</td>
<td>8.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>10.0</td>
<td>4.0</td>
<td>0.0</td>
<td>12.0</td>
<td>6.0</td>
<td>8.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>11.0</td>
<td>3.0</td>
<td>0.0</td>
<td>12.0</td>
<td>6.0</td>
<td>8.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>12.0</td>
<td>2.0</td>
<td>0.0</td>
<td>12.0</td>
<td>6.0</td>
<td>8.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>13.0</td>
<td>1.0</td>
<td>0.0</td>
<td>12.0</td>
<td>6.0</td>
<td>8.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>14.0</td>
<td>0.0</td>
<td>0.0</td>
<td>12.0</td>
<td>6.0</td>
<td>8.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>15.0</td>
<td>0.0</td>
<td>0.0</td>
<td>12.0</td>
<td>6.0</td>
<td>8.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>16.0</td>
<td>0.0</td>
<td>0.0</td>
<td>12.0</td>
<td>6.0</td>
<td>8.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>17.0</td>
<td>0.0</td>
<td>0.0</td>
<td>12.0</td>
<td>6.0</td>
<td>8.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>18.0</td>
<td>0.0</td>
<td>0.0</td>
<td>12.0</td>
<td>6.0</td>
<td>8.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Critical boom angle</th>
<th>Standard hook</th>
<th>Critical boom angle</th>
<th>Standard hook</th>
</tr>
</thead>
<tbody>
<tr>
<td>49°</td>
<td>30°</td>
<td>45°</td>
<td>68°</td>
</tr>
<tr>
<td>52°</td>
<td>45°</td>
<td>68°</td>
<td>90°</td>
</tr>
</tbody>
</table>

Unit: Metric ton

521-74300001
Notes for the lifting capacity chart

When the outriggers are used

1. The lifting capacity chart indicates the maximum load which can be lifted by this crane provided it is level and standing on firm level ground. The values in the chart include the mass of the main hook and slings for boom operation, and auxiliary hook and slings for jib operation.

 [70 ton hook (mass: 530 kg), 48 ton hook (mass: 470 kg), 34 ton hook (mass: 330 kg), 5 ton hook (mass: 120 kg)]

Within the chart the figures in the area bordered with a thick line are based on structural limitations while other figures are determined by stability limitations.

2. The working radii are the actual values allowing for boom and jib deflection. Therefore you must always operate the crane on the basis of the working radius.

3. The jib working radius is based on the jib mounted on the end of the 44.5 m boom. When operating at other boom lengths, use the boom angle alone as the criterion.

4. Do not operate the jib when the outriggers are completely retracted.

5. The lifting capacities for the over sides vary with the outriggers extension width. Therefore for each outriggers extension condition you should work according the lifting capacity chart.

 Use the front area lifting capacity chart for the front area lifting work, and use the lifting capacity chart of outriggers full extension for the rear area lifting work.

6. The lifting capacity of the rooster sheave is the lifting capacity of the boom minus the mass of all attached hook, slings etc. to the boom, with an upper limit of 5,000 kg.

 [The hook for use with the rooster sheave is the 5 ton hook (mass: 120 kg) with one part of line.]

7. If the boom length, boom angle, jib length, jib angle and/or working radius exceeds the rated value, use the lifting capacity for the rated value or for the next one, whichever gives the smaller lifting capacity.

8. If you are working with the boom while the jib is rigged, subtract 4,300 kg plus the mass of all attached hook, slings, etc. to the boom from the each lifting capacity of the boom, with an upper limit of 18 ton.

 Do not use the rooster sheave in this situation. And do not operate the boom while the jib is rigged, when the outriggers are retracted.

 [The main hook for use with the jib rigged is 34 ton hook (mass: 330 kg).]

9. In whatever working conditions the corresponding boom critical angle is shown in the chart. The crane can tip over if the boom is lowered below the critical angle even if unloaded.

 Therefore, never lower the boom below these angles.

10. If you work with 16 parts of line on the hook (with * marked in the lifting capacity chart), use the rooster sheave and sheave bracket.

 [The main hook for use with the sheave bracket is the 70 ton hook (mass: 530 kg).]

11. The standard parts of line for each boom length are as indicated in the chart. If you work with a non-standard number of parts of line, do not exceed 45.1 kN (4.6 tf) per wire rope respectively.

12. Crane operation is permissible up to a wind speed of 10 m/s. Even in relatively light wind conditions, extra care should be taken when handling loads presenting large wind catching areas.

13. If you work with a load in excess of the lifting capacity or use incorrect working procedures, you are risking damaging the crane or tipping it over. In such cases, the crane will not be guaranteed.

When the outriggers are not used

1. The lifting capacity chart indicates the maximum load the crane can lift when its body is level on firm level ground with all tires inflated to the rated pressure and the suspension cylinder completely retracted. The values in the chart include the mass of the main hook and slings.

 Within the chart the figures in the area bordered with a thick line are based on structural limitations while other figures are determined by stability limitations.

 [Rated tire pressure: 900 kPa (9.0 kgf/cm²)]

2. The working radii are the actual values allowing for boom deflection. Therefore you must always operate the crane on the basis of the working radius.

3. The lifting capacity differs between the front area capacity and the full range capacity. When slewing from the front to the side, take care that the crane could not be over loaded.

 4. The lifting capacity of the rooster sheave is the lifting capacity of the boom minus the mass of 34 ton hook (mass: 330 kg), with an upper limit of 5,000 kg.

 [The hook for use with the rooster sheave is the 5 ton hook (mass: 120 kg) with one part of line.]

5. Do not work with the jib or with a boom length of more than 23.8 m.

6. For stationary crane-on-rubber operation, the parking brake and brake lock device must be engaged.

7. For pick and carry operation, the ultra-slow switch must be switched to “ON” and the shift lever set to speed 1.

8. For pick and carry operation, lower the load to just above the ground and keep your speed strictly below 2 km/h to avoid swinging the load.

 Take particular care to avoid sharp turns, sudden starts and stops.

9. Never operate the crane during pick and carry operation. The slewing brake must be applied.

10. If the boom length, boom angle, jib length, jib angle and/or working radius exceeds the rated value, use the lifting capacity for the rated value or for the next one, whichever gives the smaller lifting capacity.

11. In whatever working conditions the corresponding boom critical angle is shown in the chart. The crane can tip over if the boom is lowered below the critical angle even if unloaded.

 Therefore, never lower the boom below these angles.

12. The standard parts of line for each boom length are as indicated in the chart. If you work with a non-standard number of parts of line, do not exceed 45.1 kN (4.6 tf) per wire rope respectively.

13. Crane operation is permissible up to a wind speed of 10 m/s. Even in relatively light wind conditions, extra care should be taken when handling loads presenting large wind catching areas.

14. If you work with a load in excess of the rated lifting capacity or use incorrect working procedures, you are risking damaging the crane or tipping it over. In such cases, the crane will not be guaranteed.
Note:
1. This diagram does not include deflection of Boom and Fly jib.
2. The outriggers are extended (over front).
Minimum path width

Right turn in 4-wheel steering mode

- \(R_1 = 11.60\) m (Minimum turning radius)
- \(R_2 = 11.80\) m (Turning radius of extremely outer tyre)
- \(R_3 = 12.70\) m (Chassis turning radius)
- \(R_4 = 13.54\) m (Boom end turning radius)
- \(R_5 = 7.00\) m (Turning radius extremely chassis inner)

Right turn in 8-wheel steering mode

- \(R_1 = 6.84\) m (Minimum turning radius)
- \(R_2 = 7.04\) m (Turning radius of extremely outer tyre)
- \(R_3 = 8.01\) m (Chassis turning radius)
- \(R_4 = 9.05\) m (Boom end turning radius)
- \(R_5 = 3.04\) m (Turning radius extremely chassis inner)

Note: The above values are based on calculations.

Overall view

Note: The above values are based on calculations.

Reduced scale: 1/100 Unit (mm)
Ramp break over angle: 24°
When the suspension is locked, the height shall be the overall height: - 85 mm.
(Suspension cylinder fully retracted)